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Polytomous logistic regression is commonly used to analyze epidemiological data with disease subtype information. In this approach
effects of exposures on different disease subtypes are studied through separate exposure odds ratios comparing different case groups to
the common control group. This article considers the situation where disease subtypes can be de� ned using multiple characteristics of a
disease. For ef� cient analysis of such data, a two-stage modeling approach is proposed. At the � rst stage, a standard polytomous logistic
regression model is considered for all possible distinct disease subtypes that can be de� ned by the cross-classi� cation of the different disease
characteristics. At the second stage, the exposure odds ratio parameters for the � rst-stage disease subtypes are further modeled in terms of
the de� ning characteristics of the subtypes. When the total number of � rst-stage disease subtypes is small, standard maximum likelihood
methods can be used for inference in the proposed model. For dealing with a large number of disease subtypes, a novel semiparametric
pseudo-conditional-likelihood approach is proposed that does not require any model assumption about the baseline probabilities for the
different disease subtypes. This article develops the asymptotic theory for the estimator and studies its small-sample properties using
simulation experiments. The proposed method is applied to study the effect of � ber on the risk of various forms of colorectal adenoma using
data available from a large screening study, the Prostate, Lung, Colorectal and Ovarian Cancer (PLCO) Screening Trial.
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1. INTRODUCTION

Diseased subjects in epidemiological studies can often be
subtyped using available medical pathological records. Such
data, if available, can be used to study “etiologic heterogeneity”
among disease subtypes, that is, if the effect of the exposures
are different for different disease subtypes. Such � ndings can
be both biologically interesting and have design implications
for future studies. For analysis of epidemiologic data with dis-
ease subtype information, polytomous logistic regression (Du-
bin and Pastermack 1986;Hosmer and Lemeshow 1989), which
has the same odds ratio parameter interpretation as separate bi-
nary logistic regressions comparing subjects of different disease
subtypes to the subjects without the disease, is popular among
epidemiologists. As better tools for disease classi� cation, in-
cluding possible use of molecular technologies such as genetic
markers (Begg and Zhang 1994;Schroeder and Weinberg 2001)
and protein expressions (Terry et al. 2002), are now increas-
ingly available, analytic issues relating to the resulting novel
data have become an important area of statistical research. This
article addresses the problem of analyzing disease subtype data
in epidemiologic studies when the subtypes are de� ned using
multiple characteristics of the disease. To introduce the prob-
lem, a motivating example is described � rst.

A study recently has been completed (Peters et al. 2003) of
the association between dietary � ber and prevalent colorectal
adenoma, a precursor of cancer, within the large multicenter
Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screen-
ing Trial conducted by the National Cancer Institute. The cases
in this study have available pathological data on the various
characteristics of the adenomatous polyps. Three speci� c char-
acteristics focused on were size, villous development, and mul-
tiplicity of the adenomatous polyps. The availability of such
data posed the problem of whether the adenoma characteristics
data can be used to identify certain subtypes of adenoma that
may be more strongly related to � ber than other subtypes.
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Several issues were raised with this analysis. First was the is-
sue of how to deal with the potentially large number of disease
subtypes that can be de� ned by cross-classi� cation of size, mor-
phology, and multiplicity, especially if one uses the exact size
information that was available in the majority of the cases. Use
of standard polytomous logistic regression may not be optimal
because a study of moderate size may not have enough of all of
the different types of diseased subjects to precisely estimate the
effect of the covariates on each subtype of disease independent
of the other subtypes. A second analytic issue was how to char-
acterize etiologic heterogeneityof the disease subtypes in terms
of the de� ning characteristics of the subtypes. When a number
of disease characteristics are being studied simultaneously, it is
naturally of interest to determine which characteristics, either
individually or jointly, play an important role in de� ning etio-
logically heterogeneousdisease subtypes.

These problems provided the motivation to propose and
study a two-stage regression model as an ef� cient and system-
atic way of analyzing epidemiological data with multivariate
disease classi� cation information. In this approach, at the � rst
stage, an unstructured polytomous logistic regression approach
is used to model the effects of the covariates on all possible
disease subtypes that can be de� ned by cross-classi� cation of
the underlying disease characteristics. At the second stage, the
subtype-speci� c regression parameters of the � rst-stage model
are modeled by utilizing the multivariate structure of the sub-
type de� nitions and the possibly ordered or continuous nature
of certain characteristics. The second-stage model reduces the
dimensionality problem associated with the estimation of the
� rst-stage regression parameters. Moreover, the parameters of
this model can be interpreted as a measure of etiologic hetero-
geneity with respect to the de� ning characteristics of the dis-
ease subtypes. It will be shown that the proposed approach is
very � exible and can be “semiparametric” in the sense that there
is no need to model the baseline disease probabilities for the
� rst-stage disease subtypes, however large the total number of
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these subtypes may be. Inferential techniques have been devel-
oped for such semiparametric models.

In Section 2, I propose the two-stage model and focus on the
interpretation of the model parameters. In Section 3.1, I brie� y
describe the standard maximum likelihood (ML) inference pro-
cedure in the proposed model. In Section 3.2, I motivate and
describe use of an alternative pseudo-conditional-likelihood
(PCL) approach that is useful for dealing with a large number
of disease subtypeswith unspeci� ed baseline disease probabili-
ties. In Section 3.3, I develop the asymptotic theory for the PCL
estimator, propose a consistent variance estimator, and show
some theoretical connectionsbetween the PCL and a semipara-
metric ML estimator. In Section 4, I study the � nite-sample
properties of ML and PCL estimators on simulated data. In Sec-
tion 5, I apply the proposed methods to data from the PLCO
study. In Section 6, I discuss some strengths and limitations of
the method relative to potentialalternativemethods and identify
some areas of future research.

2. MODEL

Suppose the disease under study can be subtyped using
K characteristics. Let the kth characteristic de� ne Mk cate-
gories for the disease. One can de� ne a total of M D M1 £
M2 £ ¢ ¢ ¢ £ MK subtypes based on all possible combinations
of the various characteristics. For the ith of N study subjects,
let Di denote the disease status, a polytomous outcome, taking
values in f0; 1;2; : : :; Mg with Di D 0, if the ith subject is dis-
ease free, and Di D m, if the subject has disease of type m. Let
Xi denote a P £ 1 covariate vector associated with the ith sub-
ject. Consider an “unstructured”polytomouslogistic regression
model speci� ed as

Pr.Di D mjXi/ D
exp.®m C XT

i ¯m/

1 C
PM

mD1 exp.®m C XT
i ¯m/

;

m D 1; : : : ;M; (1)

where ®m represents the intercept parameter and ¯m denotes the
P £ 1 vector of regression coef� cients associated with the dis-
ease subtype m. In this model, each of the M disease subtypes
is treated independentlyof the others and exp.¯m/ can be given
the usual covariate odds ratio interpretation for comparing the
mth disease group to the nondiseased group.

In the previous approach, even with few covariates and few
dimensions for disease characterization, the total number of re-
gression coef� cients, given by Q D M1 £ M2 £¢ ¢ ¢ £ MK £ P,
can easily become very large. The goal here is to propose mod-
els with fewer parameters. For the time being, the focus will
be on a single covariate. Let b D .¯1;¯2; : : : ; ¯M/T denote the
vector of M regression coef� cients corresponding to a single
covariate. Because any disease subtype m is de� ned by a par-
ticular combination of K disease characteristics, f¯mgM

mD1 can

be alternatively indexed as f¯i1i2:::iK gM1;M2;:::;MK
i1D1;i2D1;:::;iK D1. This in-

dexing immediately suggests a linear representation for the log
odds ratios as

¯i1i2 :::iK D µ .0/ C
KX

k1D1

µ
.1/
k1.ik1

/ C
KX

k1D1

KX

k2>k1

µ
.2/
k1k2.ik1

ik2
/ C ¢ ¢ ¢

C µ
.K/
12:::K.i1 i2:::iK /; (2)

where µ .0/ represents the regression coef� cient corresponding
to a reference disease subtype and the µ .1/’s represent the � rst-
order contrasts, the µ .2/’s represent the second-order contrasts,
and so on. A reference level can be chosen for each of the
K characteristics and the reference subtype for the disease can
be de� ned jointly by the reference levels of the individualchar-
acteristics. For identi� ability, all of the µ .k/’s that involve the
reference level for any of the K characteristics, excepting µ .0/,
need to be set to 0.

Now (2) can be used to specify different models for the re-
gression coef� cients by constraining different contrasts to be 0.
If all the � rst-order and higher contrasts are set to 0, the model
implies that the effect of the covariate is the same on all of the
disease subtypes and exp.µ .0// gives the corresponding com-
mon covariate odds ratio. If all the second-order and higher
contrasts are set to 0, one has the additive model:

¯i1i2 :::iK D µ .0/ C
KX

k1D1

µ
.1/
k1.ik1

/: (3)

In this model the difference between the covariate effect be-
tween two disease subtypes, which have two different levels for
the kth characteristic, say ik and i0k, but share the same level
for all the remaining characteristics, is given by ¯i1 i2;:::;ik ;:::;iK ¡
¯i1i2;:::;i0k;:::;iK D µ

.1/
k.ik/ ¡µ

.1/

k.i0k/
. Thus, model (3) assumes that “eti-

ologic heterogeneity”with respect to one characteristic of a dis-
ease does not depend on the other characteristics of the disease.
In this case the contrasts of the form µ

.1/
k.ik/ ¡ µ

.1/

k.i0k/
give a mea-

sure of the degree of etiologic heterogeneity (Begg and Zhang
1994) with respect to the kth characteristic.

Model (3) can be further relaxed to consider the following
second-order interaction model:

¯i1 i2:::iK D µ .0/ C
KX

k1D1

µ
.1/
k1.ik1 /

C
KX

k1D1

KX

k2>k1

µ
.2/
k1k2.ik1 ik2 /

: (4)

In this model the second-degree contrasts of the parameters
µ

.2/
k1k2

.ik1 ik2/ measure how the etiologic contrast parameters with
respect to the k1 th characteristics are modi� ed by the levels of
the k2th characteristics and vice versa. Inclusion of third-order
and higher interaction terms, although possible to include in
principle, may not be attractive in practice due to both dif� culty
of interpretation and lack of parsimony of the model. Higher
order models, however, can be useful in testing signi� cance of
speci� c complex interaction terms that are of intrinsic scienti� c
interest.

When the levels of a characteristic induce ordered categories,
the etiologic contrast parameters with respect to that character-
istic can be further modeled using techniques for modeling as-
sociation in contingencytables (Anderson 1984; Agresti 1996).
Speci� cally, for ordered characteristics with levels re� ecting
some kind of progression of the disease, it may be reasonable to
assume that the degree of etiologic heterogeneity between any
two levels of the characteristic cannot be less than that between
two intermediate levels of the same characteristic. If the kth
characteristic is ordered and ik D 1 de� nes the reference level
for this characteristic, one convenient way to impose the order-
ing constraints would be to use the linear regression model:

µ
.1/
k.ik/ D µ

.1/
k s.k/

ik
; ik D 1; : : : ; Mk; (5)



Chatterjee: Two-Stage Regression Model for Epidemiological Studies 129

where f0 D s.k/
1 · s.k/

2 · ¢ ¢ ¢ ·s.k/
Mk

g is a set of scores assigned to
the Mk levels of the characteristic. This model summarizes the
degree of etiologic heterogeneitywith respect to the kth charac-
teristic into a single regression coef� cient µ

.1/
k with µ

.1/
k D 0 im-

plying no heterogeneity.The scoring approach can be extended
to the second-order interaction model (4) following techniques
for modeling interactions in contingency tables (Agresti 1996).

The background for use of scoring merits discussion. Scor-
ing, in general, is a technique for analysis of ordinal categorical
data (Agresti 1996). For regression analysis of ordered categor-
ical outcomes, Anderson (1984) proposed the use of scoring
to impose ordering constraints on the regression coef� cients of
unorderedpolytomouslogistic regression models. Moreover, he
advocated the use of “one dimensional stereographicmodeling”
where a single set of scores is used to model regression coef� -
cients for different covariates.

In the context of this article, for continuous characteristics,
the exact measurements or some transformation of them can be
used as the scores. For truly categorical characteristics, how-
ever, the choice of scores may be subjective. For analysis of
contingency tables, Graubard and Korn (1987) is a good ref-
erence for various choices of scores and their relative merits
and demerits. In the context of the polytomous logistic regres-
sion model, Greenland (1994) discussed issues related to choice
of score for ordinal categorical response. In particular, he ar-
gued that equally spaced scores, such as the integer score sj D j,
would correspond to an exponential increase for the odds ra-
tios of the form exp.¯j/ D exp.¯1j/ D exp.¯1/j with outcome
level spacing j. This can give rise to unrealistically high val-
ues for changes in odds ratios between extreme categories of
the outcome. In such situations he recommended consideration
of some concave transformation of the integer score, such as
sj D

p
j, which would correspond to a less dramatic change for

the odds ratio. Based on both practical and theoretical consider-
ations [see condition(A.2) in the Appendix], I came to a similar
conclusion for the choice of scores in the proposed two-stage
model. Therefore, it is recommended that one avoid functional
forms of scores that can give rise to unrealistically high values
of odds ratios for extreme levels of an ordered characteristic.
For further guidance on strategies for choosing a suitable form
of score, the reader is referred to the analysis of the PLCO data
(Sec. 5).

So far, this article has concentrated on a single covari-
ate. Some notation is useful in formulating the problem for
multiple covariates. Let bp D .¯1p;¯2p; : : : ; ¯Mp/T denote the
vector of regression coef� cients for the M disease subtypes
associated with the pth covariate. For each of the covari-
ates, one has a model of the form bp D Z.p/µ p. Here the
design matrix Z.p/ relates the coef� cients bp of the unstruc-
tured polytomousregression model (1) to the lower dimensional
second-stage regression parameters µp . Thus, if one de� nes
b D .bT

1 ;bT
2 ; : : : ;bT

P/T and µ D .µT
1 ; µT

2 ; : : : ; µT
P/T , one has a

model of the form b D Zµ , where Z D
LP

pD1 Z.p/ is a block-

diagonal matrix with Z.1/; : : : ;Z.P/ as the diagonal blocks. In
the de� nition of b, the regression parameters are groupedby co-
variates. For describing estimation in the previous model, how-
ever, reordering b to order the parameters by disease groups
is more convenient. Let ¯ D .¯T

1 ;¯T
2 ; : : : ; ¯T

M/T de� ne such

a grouping of the regression parameters. Clearly, the second-
stage model can now be represented as ¯ D Z¤µ , where Z¤ is
obtained by a reordering of the rows of the design matrix Z.
Hereafter, with a slight abuse of notation, Z¤ will be denoted
by Z.

3. INFERENCE

3.1 Maximum Likelihood

Maximum likelihood inference in the proposed two-stage
model is relatively straightforward when the total number of
disease subtypes that is de� ned at the � rst stage of the model is
not “too large.” In the following the notation Ia will be used to
denote the a£ a identity matrix, 1b to denote the b£ 1 unit vec-
tor, ­ to denote the Kronecker product, and diag.q/ to denote
the diagonal matrix with q as the diagonal. Let XM D IM ­X.
Let Yim D I .Di D m/ denote the indicator of whether the ith
subject is of mth disease subtype. Let YT

m D .Y1m; : : : ; YNm/,
for m D 1; : : : ; M, and Y D .YT

1 ; : : : ; YT
M/T and de� ne P D

E.YjX/. Further, let W D D ¡ AAT for D D diag.P/ and A D
D.1M ­IN/. Assume that .Yi1; : : : ; YiM;Xi/, i D 1; : : : ; N, are
independentlyand identically (iid) distributed.

With this notation, the ML score equations and the corre-
sponding expected information matrix for the parameters µ can
be de� ned as ZTXT

M .Y ¡ P/ D 0 and Iµ µ D E.ZT XT
MWZXM/,

respectively. An iterative reweighted least squares algorithm
can be used to solve the score equations for µ . De� ne Y¤.t/ D
W.t/¡1

.Y ¡ P.t// C XMZµ .t/, where P.t/ and W.t/ are ob-
tained from the corresponding formulas for P and W evalu-
ated at the current estimate µ .t/. The updated estimate of Oµ
is obtained by the weighted least squares estimate O±.tC1/ D
fZTXT

MW.t/XMZg¡1ZTXT
MW.t/Y¤.t/.

3.2 Pseudo-Conditional-Likelihood Estimation

The polytomous regression model (1) involves two sets
of parameters—the intercept parameters ®m , m D 1; : : : ;M,
which determine the baseline prevalence of the different dis-
ease subtypes, and the odds ratio regression parameters ¯m,
m D 1; : : : ; M. In this model, ®m, m D 1; : : : ; M, can be treated
as a set of “nuisance parameters” in the sense that these
parameters themselves are not of scienti� c interest. Thus,
a second-stage model for the Pintercept parameters is not of
any intrinsic interest. Moreover, as shown in simulation stud-
ies in Section 4, underspeci� cation of the intercept parameters
using a second-stage model can actually give rise to bias in esti-
mation of the regression parameters of interest. Thus, in this sit-
uation, a “semiparametric modeling” approach that restricts the
second-stage model speci� cation only to the regression para-
meters of interest, but leaves the nuisance intercept parameters
completely unspeci� ed is very attractive. For a large number
of disease subtypes, however, joint maximum likelihood esti-
mation of the lower dimensional second-stage regression para-
meters of interest and a large number of intercept parameters
can become numerically challenging. To overcome this prob-
lem, use of a “pseudo-conditional-likelihood” (PCL) method
is proposed that depends only on the regression parameters of
interest and is free of the intercept parameters.

Let C 1 and C 0 denote the indices for diseased and nondis-
eased subjects, respectively. For each i 2 C 1, consider
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a “matched set,” Si, consisting of the ith diseased subject and
N0 nondiseased subjects. For each such matched set, Si , de� ne

Lc
i D Pr

µ
Di D di;Dj D 0I j 2 Si; j 6D i

­­­

[

k2Si

fDk D di; Dl D 0I l 2 Si; l 6D kg
¶
; (6)

where di denotes the observed disease subtype for the ith dis-
eased subject. In words, (6) can be described as the conditional
likelihood of the observed disease con� guration of the mem-
bers of the matched set Si given the marginal information that
exactly one member of Si is diseased with subtype di and the
remaining members are disease free. Now de� ne the PCL of the
data as

LPCL D
Y

i2C1

Lc
i D

Y

i2C1

exp.XT
i ¯di

/

exp.XT
i ¯di

/ C
P

j2C0
exp.XT

j ¯di
/
:

In the preceding formula the expression for Lc
i , as derived from

the model formula (1), is free of the associated intercept pa-
rameter ®di . Although each individual term of LPCL is de� ned
by a conditional probability, LPCL itself is not an exact con-
ditional likelihood in the sense that it cannot be viewed as a
probability of the observed data conditional on certain events.
An exact conditional likelihood, based on the likelihood of
the data conditional on the suf� cient statistics for the intercept
parameters—the marginal numbers of disease-free and different
types of diseased subjects—will also be free of the intercept pa-
rameters. Computation of such an exact conditional likelihood,
however, in general may be very complex.

The PCL score equations corresponding to the log-linear
model parameters µ are de� ned by @LPCL=@µ D 0. Using the
second-stage model formula ¯ D Zµ , the score equations can
be represented as ZTT¯ D 0, where T¯ D .TT

¯1
; : : : ; TT

¯m
/T with

T¯m
D

X

i2C1

I.Di D m/

£

»
Xi ¡

Xi exp.XT
i ¯m/ C

P
j2C0

Xj exp.XT
j ¯m/

exp.XT
i ¯m/ C

P
j2C0

exp.XT
j ¯m/

¼
:

3.3 Asymptotic Properties of PCL

In what follows the asymptotic properties of the PCL estima-
tor will be studied in a uni� ed framework that allows both of
the following scenarios: (1) The total number of � rst-stage dis-
ease subtypes is small and/or � xed, and the number of subjects
of each disease subtype increases with increasing sample size.
This situation arises when each of the disease characteristics
under consideration is categorical with a small number of lev-
els. (2) The total number of � rst-stage disease subtypes is large
and/or increases with the sample size, but the number of sub-
jects of each subtype is small/bounded.This situation can arise,
for example, when one or more of the disease characteristics
are continuous.

Let M.N/ be the total number of � rst-stage disease subtypes
for a � xed sample size N. For m ¸ 1 let p.N/

1m D Pr.N/.D D m/

and let N.N/
1m be the number of subjects of disease subtype m

in the data. Many of the quantities de� ned later depend implic-
itly on the sample size N . For notational convenience the su-
perscript .N/ will be suppressed from now on. Finally, assume
dim.µ 0), the number of second-stage regression parameters, is
� xed and does not depend on sample size.

For l D 0; 1;2 let S.l/
m D

P
j2C0

X­l
j exp.XT

j ¯m/ and s.l/
m D

ES.l/
m =N0 , where u­l , l D 0;1; 2, denotes 1;u, and uuT , respec-

tively. De� ne J m D fs.2/
m =s.1/

m ¡ [s.1/
m =s.0/

m ]­2g: Further, con-
sider the partition of the matrix ZT as ZT D [ZT

1 ; : : : ; ZT
M ] so

that each of the elements ZT
m , m D 1; : : : ;M, is a dim.µ 0/ £ P

matrix. With this notation the asymptotic property of the PCL
estimator can be stated as follows.

Proposition 1. Under the regularity conditions (A.1)–(A.4)
listed in the Appendix, the following results hold:

(a) The estimating equations ZT T¯ D 0 have a unique, con-

sistent sequence of solutions, f Oµ
N
PCLgN¸1.

(b)

p
N

¡ OµN
PCL ¡ µ 0

¢
D I ¡1 1p

N

NX

iD1

µ
I.Di > 0/

»
Xi ¡

s.1/
Di

s.0/
Di

¼

C I.Di D 0/0i

¶
C op.1/;

where

I D lim
N!1

MX

mD1

p1mZT
mJ mZm (7)

and

0i D lim
N!1

MX

mD1

p1m
exp.XT

i ¯m/

s.0/
m

£ ZT
m

»
Xi ¡

s.1/
m

s.0/
m

¼
; (8)

assuming the limits exist.

(c)
p

N. OµN
PCL ¡ µ 0/ ! N.0; Ä/ in distribution,where

Ä D I ¡1 C I ¡16I ¡1 (9)

and 6 D Var I.D1 D 0/01.

For variance estimation, a plug-in estimator is proposed
based on formula (9). Estimate I as ZT OJ Z=N, where OJ DLM

mD1 N1m OJ m with OJ m being the plug-in estimator for J m.
Estimate 6 by the empirical variance estimator O6 D 1=N £
P

j2C0
O0j O0T

j , where O0j is obtained from formula (8) with p1m

replaced by N1m=N, s.l/
m replaced by OS.l/

m =N , and ¯m replaced
by Ō

m.

Note on Ef� ciency. In simulation studies (Table 1) when the
ef� ciency of the PCL was compared to that of the ML, in most
situations, the PCL was found to have similar ef� ciency as that
of an ML estimator that allows saturated intercept parameters.
This empirical observation, as pointed out by a reviewer, mo-
tivated a study of the theoretical connection between the ML
with saturated intercept model and the PCL method. This gave
rise to some interesting alternative insight into the PCL method.

For a � xed value of ¯ , the saturated ML estimate of ®m, de-
noted by O®m.¯/, will satisfy the score equation

exp.®m/ D Nm

"
NX

iD1

exp.XT
i ¯m/

1 C
PM

mD1 exp.®m C XT
i ¯m/

#¡1

: (10)
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Table 1. Simulation Results for a “Small” Number of Disease Subtypes De�ned by Three
Dichotomous Characteristics

Random sample Case–control sample

Estimator Parameter Mean SE est(SE) Mean SE est(SE)

ML (correct) µ (0) .354 .131 .132 .354 .153 .152
µ (1)

1(2) .152 .149 .151 .154 .152 .153

µ (1)
2(2) ¡.001 .153 .151 ¡.001 .155 .153

µ (1)
3(2) .502 .155 .152 .509 .161 .157

ML (underspeci�ed) µ (0) .278 .149 .139 .278 .167 .157
µ (1)

1(2) .218 .139 .143 .221 .142 .145

µ (1)
2(2) .085 .141 .142 .087 .144 .144

µ (1)
3(2) .516 .148 .148 .524 .154 .153

ML (unspeci�ed) µ (0) .354 .131 .132 .354 .153 .152
µ (1)

1(2) .152 .149 .151 .154 .152 .153

µ (1)
2(2) ¡.001 .153 .151 .000 .155 .153

µ (1)
3(2) .502 .155 .152 .509 .161 .157

MPCL µ (0) .353 .131 .132 .352 .158 .155
µ (1)

1(2) .152 .149 .152 .157 .157 .157

µ (1)
2(2) ¡.001 .152 .152 ¡.001 .159 .156

µ (1)
3(2) .502 .157 .153 .518 .180 .169

NOTE: The parameters µ (0) , µ
(1)
1(2) , µ

(1)
2(2) , and µ

(1)
3(2) correspond to the second-stage model for the regression coef� cients of X . The

true values of these parameters are .35, .15, 0, and .5, respectively.

Let ® D .®1; : : : ; ®m/T . The ML score equation for µ is of the
form ZTR¯ D 0, where R¯ D .RT

¯1
; : : : ;RT

¯M
/T with

R¯m
´ R¯m

.®; ¯/ D
NX

iD1

XT
i

©
I.Di D m/ ¡ Pm.Xi/

ª
; (11)

and Pm.Xi/ D Pr.Di D mjXi/ for m D 1; : : : ;M is de� ned in (1).
Let P0.Xi/ D Pr.Di D 0jXi/ D [1 C

PM
mD1 exp.®m C XT

i ¯m/]¡1

and note that Pm.Xi/ D exp.®m/ exp.XT
i ¯m/P0.Xi/. Substitu-

tion of (10) into (11) now yields the function

R¯m
f O®.¯/;¯g

D
NX

iD1

I.Di D m/

£

(

Xi ¡
PN

jD1 Xj exp.XT
j ¯m/Pf O®.¯/;¯g

0 .Xj/
PN

jD1 exp.XT
j ¯m/Pf O®.¯/;¯/g

0 .Xj/

)
; (12)

where Pf O®.¯/;¯g
0 .X/ denote P0.X/ evaluated at f O®.¯/;¯g. Now

consider a variation of (12), ignoring the dependency of P0 on
fO®.¯/; ¯g and instead � xing P0 at its true value P.0/

0 ´ P
.®0;¯0/

0 .

Of course, because .®0;¯0/ is unknown P.0/
0 cannot be eval-

uated, but the sums of the form
PN

jD1 X­l
j exp.XT

j ¯m/P.0/
0 .Xj/

can be empirically estimated by
PN

jD1 I.Dj D 0/X­l
j exp.XT

j ¯m/.
It is now easy to see that this approximation to R¯m

fO®.¯/; ¯g
precisely gives T¯m

, the PCL score function for ¯m, except for
some asymptotically ignorable terms. The preceding calcula-
tions show some inherent connection between PCL and ML
estimators and, hence, give some insight into the observed high
ef� ciency of the PCL estimator in simulation studies.

4. SIMULATION EXPERIMENTS

In this section, the � nite-sample properties of ML and PCL
estimators are studied on simulated data. Data were � rst simu-
lated in a scenario where the total number of disease subtypes
is “small.” Three disease characteristics were considered, each
with two levels. This de� nes a total of 23 D 8 disease subtypes.
In each simulation, a single exposure variable X was generated
following a standard normal distribution. Given the exposure
value, the polytomous logistic regression model (1) was used
to generate a multinomial outcome with nine cells, one for the
nondiseased subjects and eight for subjects of different disease
subtypes. It was assumed that the eight intercept parameters
followed the second-order interaction model (4) and the eight
regression parameters followed the additive model (3). In this
additive model the regression parameters µ .0/, µ

.1/
1.2/, µ

.1/
2.2/, and

µ
.1/
3.2/ were chosen to be .35, .15, 0, and .5, respectively. In the

interactionmodel for the intercept terms, µ .0/, µ
.1/
1.2/, µ

.1/
2.2/, µ

.1/
3.2/,

µ
.2/
12.22/, µ

.2/
13.22/, and µ

.2/
23.22/ were chosen to be ¡3:84, ¡:7, ¡:7,

¡:7, .5, .5, and .5, respectively. The marginal probability of
the disease corresponding to these parameters is approximately
10%. In each replication2,000 random samples were generated
from the preceding model. Also considered was a case–control
sample from the same model that selects all the cases (200 on
average) obtained from the random sample and a random sam-
ple of the controls of the same size as the number of cases. To
investigate the effects of under� tting and over� tting the inter-
cept parameters on the ML estimation of the regression para-
meters, during analysis of each dataset, in addition to � tting the
correct model for the intercepts, two other models were also � t-
ted: the additive model (3) and a saturated model that allows
eight separate intercept parameters.
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Table 1 shows the mean and standard errors of the ML and
maximum PCL (MPCL) estimates of the second-stage regres-
sion parameters as well as the mean of the corresponding stan-
dard error estimates obtained from 1,000 simulated datasets.
One can make the following key observations:

1. The bias of the ML estimates with the correctly speci� ed
and the saturated intercept model and that of the MPCL esti-
mates are negligibly small. Underspeci� cation of the intercept
model, however, produces signi� cant bias in the ML estimates
of the regression parameters.

2. The standard errors of the correct and the saturated ML
were identical. This result is somewhat counterintuitivebecause
one would expect the correctly speci� ed ML to be more ef-
� cient than the over� tted ML. Further investigation suggested
that this phenomenon is related to the fact that the true second-
order interactionmodel involvesseven parameters, only one pa-
rameter less than the saturated model.

Additional simulations were also considered where the cor-
rect model for the intercept parameter was an additive model
involving only four parameters. Even in this scenario, where
some differences between the standard errors of ML correct and
ML saturated started to become evident, the relative ef� ciency
of ML saturated always remained very high (at least 90%) com-
pared to that of ML correct. From these simulationsit is obvious
that one generally does not gain much ef� ciency for estimation
of the regression parameters by specifying a lower order model
for the intercept parameters.

3. MPCL has very high ef� ciency, in most cases 100%, rel-
ative to the saturated ML. The maximum loss of ef� ciency was
observed for the case–control sampling design for the parame-
ter µ

.1/
3.2/. The true valueof this parameter was .5, which re� ected

a very strong effect.
4. The standard inverse information matrix variance estima-

tor for ML and the proposed standard error estimator for MPCL
perform very well in estimating the true standard errors of the
correspondingestimates.

In the next experiment data were generated from a model
where the number of possible disease subtypes is large, but the
number of subjects of each particular subtype is small. Three
characteristics for the disease, each with six ordered levels, de-
noted by ik D 1; : : : ;6, for k D 1; 2;3, were considered. This
de� nes a total of 63 D 216 � rst-stage disease subtypes. As be-
fore, a single exposure variable X was considered following a
standard normal distribution. It was assumed that the exposure
odds ratio parameters for the 216 disease subtypes followed the
additive model (3), where the parameters µ

.1/
k.ik/, ik D 1; : : : ; 6,

for each of the k D 3 characteristics are further speci� ed using
a set of scores using (5). For simplicity, it was assumed that the
set of scores for the three characteristics are the same, de� ned
by sk.ik/ D .ik ¡ 1/:3 and sk.1/ D 0. The baseline common re-
gression parameter (µ .0/) for model (3) was chosen to be .35
and the slope parameters in model (5) for the three characteris-
tics, denoted by µ

.1/
1 , µ

.1/
2 , and µ

.1/
3 , were chosen to be .15, 0,

and .5. The intercept parameters were allowed to be saturated.
Two hundred and sixteen free intercept parameters were gen-

erated from the model

®i1 i2 i3 D µ .0/ C
3X

kD1

µ
.1/
k.ik/ C ²i1i2i3 ; (13)

Table 2. Simulation Results for a “Large” Number of Disease Subtypes
De� ned by Three Six-Level Ordered Characteristics

Random sample Case–control sample

Parameter Mean SE est(SE) Mean SE est(SE)

µ (0) .354 .376 .370 .355 .407 .392
µ (1)

1 .153 .178 .178 .161 .189 .186

µ (1)
2 ¡.005 .178 .171 ¡.006 .190 .180

µ (1)
3 .504 .198 .195 .520 .219 .210

NOTE: The parameters µ (0) , µ
(1)
1 , µ

(1)
2 , and µ

(1)
3 correspond to the second-stage model for

the regression coef� cients of X . The true values of these parameters are .35, .15, 0, and .5,
respectively.

where µ .0/ was chosen to be ¡2:95, µ
.1/
k.ik/, ik D 1; : : : ;6, were

chosen to be ¡2:0, ¡1:6, ¡1:0, ¡1:6, ¡2:0, ¡2:7, respectively,

for each of the k D 3 characteristics, and f²i1i2i3g
iid» N.0; :52/.

The marginal probability of the disease corresponding to this
set of parameter values was approximately 10%. The set of in-
tercept parameters was generated once and then treated as � xed
as data were repeatedly simulated from the corresponding 217-
category polytomous regression model. As in Table 1, in each
replication, data were generated from the model using both a
random sample (N D 2;000) and a case–control sample (ap-
proximately 200 cases and 200 controls). In each replication
the PCL method was applied to estimate the parameters for the
second-stage model of the regression coef� cients, namely, the
baseline parameter µ .0/ and the slope parameters µ

.1/
1 , µ

.1/
2 , and

µ
.1/
3 . The scores for the categories of the different characteris-

tics were assumed to be known. Computation of the saturated
ML with 216 intercept parameters was unstable and was not
pursued.

Table 2 shows that both the MPCL estimates and the pro-
posed standard error estimates unbiasedly estimate the respec-
tive population parameters. This result is consistent with the
asymptotic results that PCL is a valid estimator even in situa-
tions where the number of � rst-stage disease subtypes is very
large, but the number of subjects of each subtype is sparse.

5. DATA EXAMPLE

In this section the proposed method is applied to examine the
association between dietary � ber and the prevalence of colorec-
tal adenoma using data from the PLCO trial. Besides the main
exposure of interest, Fiber (grams), the study also included total
calorie intake (Energy), a covariate that is commonly adjusted
for examining nutrient–disease association; smoking history
(Smoking—Yes/No), a known risk factor for colorectal ade-
noma; and Age and Gender. Data on 1,755 cases and 18,945
controls were available, where the cases and the controls were
de� ned as subjects with and without adenoma, respectively, as
detected during baseline screening examination. Data on ade-
noma characteristics consisted of the number of adenomatous
polyps (single vs. multiple), the presence of any polyp with vil-
lous element (Morphology—Yes/No), and the size of the largest
polyp (<10 mm or not). In addition, the exact sizes (in millime-
ters) of the largest polyps were available for 1,628 cases.

First, consider an analysis based on the dichotomoussize in-
formation. The subscripts 1, 2, and 3 will be used to denote the
characteristic size, morphology, and multiplicity, respectively.
The � rst level for each of these characteristics, that is, small
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for size, nonvillous for morphology, and single for multiplic-
ity, will be labeled as “1,” and the second level will be labeled
as “2.” Eight disease subtypes are de� ned based on size, mor-
phology, and multiplicity. The eight intercept parameters are
left unspeci� ed and different models are considered for the co-
variate odds ratios. Because the number of disease subtypeswas
relatively small, the full maximum likelihood procedure was
implemented for parameter estimation.

A model for each covariate odds ratio was selected using the
following forward selection procedure. Begin with the additive
model (3) and test for signi� cance of interaction terms using
likelihood ratio tests. For each pair of characteristics, test for
the signi� cance of the corresponding interaction term in each
of the � ve covariate odds ratio models. For all signi� cance tests
® D :05 was chosen as the critical value.

Following this procedure, the interaction between morphol-
ogy and multiplicity (µ .2/

23.22/) in the odds ratio model for Gender
was found to be signi� cant. As a � nal test of goodnessof � t, the
selected model was compared against a saturated model that al-
lows eight separate odds ratio parameters for each of the covari-
ates and the corresponding likelihood ratio test was found to be
insigni� cant (p value D :3). Adenomas with a single, small, and
nonvillouspolyp, the most common form of adenoma observed
in the data, were chosen as the baseline disease subtype.

The following conclusions can be made from the results
shown in Table 3: (1) The estimates of µ .0/ reveal that the preva-
lence of the reference subtype of adenoma was positively asso-
ciated with lower intake of � ber, higher intake of energy, past
smoking history, age, and being male. (2) Estimates of µ

.1/
1.2/

reveal that � ber–adenoma association is signi� cantly (p value
D :022) stronger for large adenomas than for small adeno-
mas. Quantitatively, the odds ratio associated with 10 g of � ber
for large adenomas was 18% (95% CI: 3–30%)—computed as
100 £f 1 ¡ exp.10 £ Oµ .1/

1.2//g—smaller than that for the small

adenomas. (3) Estimates of µ
.1/
2.2/ reveal that all the covari-

ates have a similar effect on villous and nonvillous adenomas.
(4) Estimates of µ

.1/
3.2/ suggest that past history of smoking was

more strongly associated with risk of multiple adenoma than
with risk of single adenoma. (5) The signi� cance of µ

.2/
23.22/

(p value D :006) implies that the male–female difference in risk
is stronger for adenomas with villous and multiple polyps than
for the other forms of the disease.

Figure 1 compares the ML estimates and 95% con� dence in-
tervals for the parameters of the � rst-stage model—the subtype-
speci� c odds ratios for � ber—from the � tted additive model
with those from a saturated polytomous logistic regression
model that allows a completely independent effect of the co-
variates on the eight different adenoma subtypes. It was found

that, for most disease subtypes, the saturated and the modeled
ML estimates were in close agreement. The con� dence inter-
vals for the latter estimates, however, were generally smaller.
The biggest difference between the point estimates was ob-
served for adenomas characterized by a single, villous, small
polyp (denoted as 010 in the � gure). For this type of adenoma,
the saturated model estimated the effect of � ber to be harmful,
that is, the log odds ratio was slightly less than 0, although the
effect was statistically insigni� cant. In contrast, the two-stage
model, which assumes a certain degree of similarity between
the subtype-speci� c exposure odds ratios, “shrinks” this outly-
ing estimate toward the other seven estimates and brings it into
the positive range.

Next, consider the use of the exact (continuous) size infor-
mation that was available on the subset of 1,628 cases. Figure 2
shows the distribution of the adenoma cases by their exact size.
Although imperceptible to the eye due to the scaling of the his-
tograms, for each combination of morphologyand multiplicity,
there were at least 15 adenomas of size 20 mm or larger. Al-
together, adenomas of 27 different sizes ranging from 1 mm to
50 mm were observed.

The PCL methodology was applied to an analysis of these
data as the total number of distinct adenoma subtypes in this
example was large (M D 27 £ 2 £ 2 D 108). Similar to Table 3,
an additive second-stage model was selected for Fiber, Energy,
Smoking, and Age and a single parameter interactionmodel for
Gender. µ

.1/
1.s/, the contrast between the log exposure odds ratios

for adenomas with size s and that for adenomas with a refer-
ence size s0, was modeled using the linear model of the form
µ

.1/
1.s/ D µ

.1/
1 £ f .s/ for some � xed score function f . Because the

natural integer score function f .s/ D s could give rise to unre-
alistically high values of exposure odds ratios for large adeno-
mas [see the discussion on choice of scores in Sec. 2 and the
regularity condition (A.2) in the Appendix], the transformation
f .s/ D log.s/ was used as a candidate for the score function.
As a diagnostic for adequateness of the log transformation, the
class of Box–Cox transformations was considered:

f®.s/ D

8
<

:

s® ¡ 1
®

if ® 6D 0

log.s/ if ® D 0.

For a given value of ®, a measure of goodness of � t for the
corresponding score function f®.s/ was de� ned as the value of
the ¡2 log.LPCL/ evaluated at µ D Oµ that maximizes the LPCL

for the given score function f®.s/. Based on a crude grid search
over ®, it was found that the “best � tting transformation” cor-
responds to ® D ¡:1. Thus, considering easy interpretation as
well as goodness of � t, the log transformation (® D 0) seems

Table 3. PLCO Data—Estimates (standard errors) of the Second-Stage Parameters
Using Dichotomized Size Information

Covariate µ (0) µ (1)
1(2) µ (1)

2(2) µ (1)
3(2) µ (1)

23(22)

Fiber ¡.022 (.005) ¡.019 (.009) .010 (.010) ¡.004 (.008)
Energy .018 (.006) .004 (.010) ¡.010 (.012) .004 (.010)
Smoking .240 (.072) .094 (.118) ¡.024 (.135) .269 (.119)
Age .019 (.007) .005 (.011) .010 (.013) .002 (.011)
Female ¡.381 (.081) ¡.057 (.132) .216 (.167) ¡.098 (.148) ¡.845 (.301)

NOTE: The subscripts 1, 2, and 3 correspond to size, villous status, and multiplicity, respectively.
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Figure 1. PLCO Data—Estimates of the First-Stage Regression Parameters Using Dichotomized Size Information. The estimates of the sub-
type-speci�c log odds ratios were obtained using a � tted two-stage model (triangles) and a saturated polytomous logistic regression model (circles)
that allows independent effect of the covariates on each adenoma subtype. The bars around the estimates show the respective 95% con�dence
intervals. Adenoma subtypes are coded as 000 D (small, nonvillous, single); 001 D (small, villous, multiple); : : : ;111 D (large, villous, multiple).

Figure 2. Distribution of Adenoma Cases by Size of Polyps.
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Table 4. PLCO Data—Estimates (standard errors) of the Second-Stage Parameters
Using Continuous Size Information

Covariate µ (0) µ (1)
1 £ 10 µ (1)

2(2) µ (1)
3(2) µ (1)

23(22)

Fiber ¡.025 (.005) ¡.013 (.006) .006 (.010) ¡.001 (.009) —
Energy .018 (.006) ¡.002 (.008) ¡.003 (.012) .001 (.010) —
Smoking .278 (.069) .068 (.092) ¡.035 (.138) .259 (.123) —
Age .024 (.007) ¡.015 (.009) .021 (.013) .008 (.011) —
Female ¡.366 (.079) ¡.190 (.103) .304 (.172) ¡.146 (.154) ¡.866 (.319)

NOTE: The subscripts 1, 2, and 3 correspond to size, villous status, and multiplicity, respectively.

to be a reasonable choice for “scoring” adenomas of differ-
ent sizes. Finally, to make the analysis comparable to Table 3,
where small adenoma (<10 mm) was de� ned as the reference
level for size, the reference value of size in the continuous
analysis was chosen to be 6 mm, the median size for small ade-
nomas in these data. Thus, the score function log.s/ was cen-
tered as log.s/ ¡ log.6/ so that µ

.1/
1.6/ D 0.

The estimates shown in Table 4 reveal that continuousanaly-
sis of size gives very similar results as those for the categorical
analysis (Table 3). In particular, the estimate of µ0 reveals that
Fiber was associated with a signi� cant decreased prevalence of
the reference subtype of adenoma. Moreover, the estimate of µ1

suggests that among adenoma cases higher � ber consumption
was negatively associated with the size of the adenoma.

Althoughvarious analyses of the data show a consistent asso-
ciation between � ber intake and adenoma size, the results need
to be cautiously interpreted due to the cross-sectional nature of
the data. Because the latency of an adenoma would be a strong
determinant of its size, the association between � ber and size
observed here could merely be a re� ection of the association
between � ber and the latency of the adenomas. Analyses of in-
cident adenoma cases are needed in the future to examine if
� ber truly has a larger protective effect on larger adenomas than
on smaller adenomas.

6. DISCUSSION

The simulation study (Table 1) showed that underspeci� ca-
tion of the nuisance intercept parameters can cause substan-
tial bias in estimation of the regression parameters of interest.
Moreover, a lower order model for the intercept parameters,
even when correct, does not yield much ef� ciency gain for es-
timation of the regression parameters. Given these empirical
observations and the fact that the intercept parameters them-
selves are not of scienti� c interest, it seems the best strategy
would be to leave the intercept parameters completely unspec-
i� ed. In contrast, the regression parameters are of direct sci-
enti� c interest and modeling of the � rst-stage parameters using
the lower dimensionalsecond-stageparameters seems attractive
for both ef� ciency and interpretationpurposes. Underspeci� ca-
tion of the second-stage model for the regression parameters
can also create substantial bias in estimates of the � rst-stage re-
gression parameters. To minimize the possibility of such bias,
it is important to use proper model selection methods to choose
a parsimonious and yet adequate second-stage model. Within
the framework described here, standard model selection tech-
niques, such as forward or backward selection methods, can be
used to select the best � tting second-stage model.

Two alternativemethods for � tting the proposed model to the
data were considered in this article: standard maximum likeli-
hood (ML) and the novel pseudo-conditional-likelihood(PCL).
The main advantage of PCL is that it can be computationally
simpler than ML when dealing with a large number of disease
subtypes. Moreover, based on appropriate asymptotic theory, it
was shown that PCL is a valid estimator for the second-stage
regression parameters of interest in a semiparametric setting
where the baseline disease probabilities are allowed to be un-
speci� ed, however large the number of � rst-stage disease sub-
types may be.

At this point it is hard to give a general guideline about how
large the number of disease subtypes has to be before the com-
putation of ML becomes dif� cult and PCL becomes advanta-
geous. However, note that the PCL methodology is valid for
both a small and a large number of disease subtypes. Moreover,
based on both simulation studies and some theoretical argu-
ments, it was shown that PCL can be thought of as a computa-
tionally simple but ef� cient approximation to an ML estimator
that allows saturated intercept parameters. Thus, PCL generally
seems to be a very attractive method for analyzing the data irre-
spective of whether there are a large or small number of disease
subtypes. Use of ML, however, can be advantageousif there are
a large number of cases with missing disease characteristic in-
formation. In this case an EM algorithm–based ML method can
be used to ef� ciently incorporate cases with missing disease
characteristic information into the analysis. Similar techniques
for handling missing data are not yet available for PCL and are
currently under investigation.

A unique feature of the data in the problem presented here is
the mixed nature of the outcome variable, de� ned by a single
stratum for the nondiseased subjects and by a multivariate out-
come for the diseased subjects. An alternative to the approach
given in this article for analyzing such mixed multivariate data
could be as follows. First analyze the case–control data using
a standard logistic regression model to obtain estimates for the
effects of the covariates on overall risk of the disease, irrespec-
tive of the subtypes. Data on disease characteristics can then
be further analyzed by regression methods for multivariate out-
come data (see, for example, sec. 6.3 of McCullagh and Nelder
1989), and the presence of any association between the covari-
ates and the disease characteristics can be taken as an indication
of etiologicheterogeneitybetween the disease subtypeswith re-
spect to the correspondingcharacteristics. At this stage one can
use either marginal models that only require speci� cation of
the � rst- and possibly second-order moments of the multivari-
ate data (Zhao and Prentice 1990; Liang, Zeger, and Quaqish
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1992) or one can use multivariate models that require speci-
� cation of a full joint distribution of the multivariate data. Al-
though marginal regression models can be useful for examining
the marginal association between the individualdisease charac-
teristics and the covariates, the approach may not be suitable if
multiple characteristics of a disease jointly de� ne etiologically
distinct subtypesof the disease. Moreover, even if the individual
disease characteristics completely determine the etiologic het-
erogeneity among the disease subtypes, the marginal approach
may not give a way to combine the estimates of the etiologic
contrasts or association parameters corresponding to the indi-
vidual characteristics to yield estimates of the subtype-speci� c
covariate odds ratios of interest (see Fig. 1).

Specifying a full multivariate model for the disease charac-
teristics, on the other hand, may be a very complex task, de-
pending on the nature of the characteristics, and may require
strong distributionalassumptions. In contrast, note that the two-
stage polytomous regression approach proposed here can han-
dle continuousand categorical characteristics, both ordered and
unordered, in a uni� ed fashion and the PCL methodology de-
scribed here for estimation in this model allows semiparamet-
ric inference with minimal distributional assumptions about the
underlying characteristics.

Another important advantage of the method proposed here
comes into play if the cases are differentially sampled into
the study based on their disease subtypes, a situation that may
arise either by design or by chance. Due to the multiplica-
tive intercept structure of the � rst-stage regression model, the
proposed method can handle complex case selection designs
without changing the parameter interpretations and inference
techniques for the regression parameters of interest.

An important feature of the method proposed in this article
is that the degree of etiologic heterogeneity with respect to one
characteristic is de� ned by holding the levels of the other char-
acteristics constant. Whether this conditional interpretation of
the etiologic contrast parameters is desirable can be debated in
certain situations. In the adenoma data, for example, because
the variable Size is de� ned as the size of the largest polyp, it
seems natural to condition on multiplicity to examine if the co-
variates have different effects on adenomas of different sizes.
Conditioningon size, on the other hand, to test if the covariates
have different effects on adenomas with different multiplicities
seems somewhat arti� cial. In such situations the etiologic con-
trast parameters in the models should be cautiously interpreted.
With this caution in mind, given its various advantages, the pro-
posed methodologyoverall seems a promising approach to the
problem studied in this article.

APPENDIX: REGULARITY CONDITIONS AND PROOF
FOR PROPOSITION 1

A.1 Regularity Conditions for Proposition 1

Following are a set of regularity conditions that are suf� cient for
the conclusion of Proposition 1 to be valid. In these conditions, the
quantities p1m, ¯m, Zm, and J m all implicitly depend on the sample
size N . For notational convenience, however, the superscript .N/ is
suppressed.

(A.1) The total probability of being a case,
PM

mD1 p1m, is � xed at
p1 2 .0;1/.

(A.2) The elements of the design matrix Z remain uniformly
bounded in absolute value by a constant.

(A.3) limN!1
PM

mD1 p1mZT
mJ mZm exists and is positive de� -

nite.
(A.4) 0 < E.euT X/ < 1 for all u 2 <P.

Some discussion of condition (A.2) is warranted. This condition will
be trivially satis� ed for the models described in this article for un-
ordered characteristics because in this case the matrix Z simply rep-
resents a design matrix of 0s and 1s. For ordered characteristics with
� xed scores, Z will include the scores for different characteristics as
its elements. Thus, condition (A.2) in this case is equivalent to require-
ment of bounded scores for ordered characteristics.

A.2 Asymptotic Theory

First, note that, for purposes of studying asymptotic theory, the
score equations ZT T¯ D 0 can be slightly modi� ed to ZTT¤

¯
D 0,

where T¤
¯

D .T¤T
¯1

; : : : ;T¤T
¯M

/T with T¤
¯m

D
P

i2C1
I.Di D m/fXi ¡

S.1/
m =S.0/

m g. The following lemma states a key step that is needed for
the proof of Proposition 1.

Lemma 1.

(a)

p
NWNm ´

p
N

(
S.1/

m

S.0/
m

¡
s.1/
m

s.0/
m

)

d! 1p
N

1

s.0/
m

NX

iD1

I.Di D 0/ exp.XT
i ¯m/

»
Xi ¡

s.1/
m

s.0/
m

¼
:

(b) The preceding convergence result holds uniformly for all m.

Proof of Lemma 1. Let Q be the set of all probabilitymeasures for
X de� ned on <P and de� ne the functional 9m : Q 7! <P as 9m.Q/ D
9

.1/
m .Q/=9

.0/
m .Q/, where 9

.l/
m .Q/ D

R
X­l exp.XT¯m/ dQ.X/, l D

0;1. With this notation,
p

NWNm can be expressed as
p

N[9mfQN g¡
9mfQ0g], where Q0 denotes the true underlying probability
distribution for X given D D 0 and QN denotes the corresponding
empirical distribution function. The representation of

p
NWNm as a

functional of the empirical process QN suggests the use of modern
empirical process theory to study its asymptotic property. First, by in-
voking the functional delta theorem (thm. 20.8 of van Der Vaart 1996),
one can write

p
N[9mfQN g ¡ 9mfQ0g] D

p
N P9m[QN ¡Q0] C op.1/,

where P9m : Q 7! <P is a continuous linear map that represents the
Hadamard derivative (see sec. 20.2 of van Der Vaart 1996 for a de� -
nition) of functional 9m : Q 7! <P . Because 9m is de� ned as a ratio
of two linear maps, the existence of the Hadamard derivative P9m fol-
lows by the chain rule of Hadamard differentiability(thm. 20.9 of van
Der Vaart 1996). Further, it follows that

p
N P9m[QN ¡ Q0] can be

computed as an ordinary derivative given by

p
N

±

±²
9m

©
.1 ¡ ²/Q.0/

0 C ²QN
ª­­­­

²D0

D
p

N

9
.0/
m .Q0/

EQN exp.XT
¯m/

(

X ¡ 9
.1/
m .Q0/

9
.0/
m .Q0/

)
;

which is precisely the expression on the right side of (a) and, hence,
part (a) of the lemma is proved.

To prove part (b) of Lemma 1, � rst note that, by (A.2), there exists a
compact set B 2 <P so that ¯m 2 B for all m in an open neighborhood
of µ0 . Thus, in an open neighborhood of the true parameter value µ0,
the function exp.¯T

mX/ can be uniformly bounded by a function of
the form exp.XT ° / for some constant vector ° , uniformly for all m.
Now, by ordinary application of the central limit theorem, it can be
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easily shown that the
p

N[9.l/
m .QN / ¡ 9

.l/
m .Q0/], l D 0; 1, converge

in distribution to appropriate normal distributions with the remainder
term going to 0 in probabilityuniformly in m. Using this, together with
the fact that EQ exp.XT ¯m/ is bounded below uniformly for all m and
all Q in an open neighborhoodof Q0 [by (A.2) and (A.4)], one can now
easily show that the error term in Lemma 1(a) goes to 0 in probability
uniformly over m.

Lemma 2.

(a)

EI.D D m/X­l ´ exp.®m/s.l/
m ;

(b)

1
N

Var
NX

iD1

I.Di > 0/ZT
Di

(

Xi ¡
s.1/
Di

s.0/
Di

)
D

MX

mD1

p1mZT
mJ mZm:

Proof of Lemma 2. The identity in part (a) easily follows as by
standard conditional expectation arguments both sides of the identity
can be shown to be equivalent to EX­l exp.®m C XT ¯m/P.D D 0jX/.

To prove part (b), � rst note that the variance term on the left side of
the identity is given by

1
N

NX

iD1

EI.Di > 0/ZT
Di

(

Xi ¡
s.1/
Di

s.0/
Di

)­2

ZDi

D
MX

mD1

p1mZT
mE

"(

Xi ¡
s.1/
m

s.0/
m

)­2­­­D D m

#

Zm:

Now, from the repeated use of identity (a),

E

"(

Xi ¡ s.1/
m

s.0/
m

)­2­­­D D m

#

D 1
p1m

EI.D D m/

(

Xi ¡
s.1/
m

s.0/
m

)­2

D 1

exp.®m/s
.0/
m

(

exp.®m/s
.2/
m ¡ 2 exp.®m/s

.1/
m

µ
s.1/
m

s.0/
m

¶T

C exp.®m/s.0/
m

µ
s.1/
m

s.0/
m

¶­2
)

D J m

and, hence, part (b) is proved.

Proof of Proposition 1.
(a) Consistency. From the law of large numbers for triangular ar-

rays,

1
N

ZT T¤
¯

P! lim
N!1

MX

mD1

p1mZT
mE

»
Xi ¡

s.1/
m

s.0/
m

­­­D D m

¼
: (A.1)

Now, using the identity stated in Lemma 2(a), it is easy to show that
each of the conditional expectations in expression (A.1) is 0. Thus,
the main condition for consistency, the asymptotic unbiasednessof the
score equations, is proved. Now, differentiation of the score functions
gives

@

@µT ZT T¤
¯ D

NX

iD1

I.Di > 0/ZT
Di

(
S.2/

Di

S.1/
Di

¡
"

S.1/
Di

S.0/
Di

#­2)

ZDi :

From the law of large numbers and condition (A.3),

@

@µT

©
ZT T¤

¯ =N
ª P! ¡ lim

N!1

X

m
p1mZT

mJ mZm D ¡I :

Using the boundedness conditions given in conditions (A.2) and (A.4),
one can further show that the preceding convergenceis uniform in µ in

an open neighborhoodof µ 0. Consistencyof f OµN
PCLg now follows from

straight application of the results given in Foutz (1977).
(b) Asymptotic normality. To establish the given form of the asymp-

totic representation of the PCL estimator, � rst consider the Taylor se-
ries expansion

p
N

¡ OµN
PCL ¡ µ0

¢
D ¡

µ
1
N

@

@µT ZT T¤
¯

¶¡1 1p
N

ZT T¤
¯ C op.1/:

Now write

1p
N

ZT T¤
¯ D 1p

N

NX

iD1

I.Di > 0/ZT
Di

(
Xi ¡

s.1/
Di

s.0/
Di

)

¡
1

p
N

NX

iD1

I.Di > 0/ZT
Di

(
S.1/

Di

S.0/
Di

¡
s.1/
Di

s.0/
Di

)

:

Using Lemma 2, one can write the second term in the preceding ex-
pression as

1
N

NX

iD1

I.Di > 0/ZT
Di

"
1

p
N

NX

jD1

I.Dj D 0/

£
exp.XT

j ¯Di
/

s.0/
Di

(

Xj ¡
s.1/
Di

s.0/
Di

)#
C op.1/:

By changing the order of the two sums in the previous expression,

1
p

N

NX

jD1

I.Dj D 0/

"
1
N

NX

iD1

I.Di > 0/

s.0/
Di

£ exp.XT
j ¯Di

/ZT
Di

(

Xj ¡
s.1/
Di

s.0/
Di

)#
C op.1/:

By the law of large numbers, the expression within [ ] converges in
probability to 0 j. This proves part (b) of the proposition. Asymptotic
normality of the PCL estimator now follows from a standard applica-
tion of the central limit theorem for triangular arrays. The given form
of the asymptotic variance follows from part (b) of Lemma 2.

[Received May 2002. Revised June 2003.]
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